CALCULATION OF THE TEMPERATURE PROFILE
OF A PERFORATED FIN

V. A, Kirpikov and I. I. Leifman UDC 536.242:536.12

An approximate method is proposed for calculating the temperature profile of a thin per-
forated fin,

In connection with a study concerning one novel design of an effective heating surface, there arises
the problem of determining the steady-state temperature field in a thin (/1 « 1) perforated fin (Fig. 13).
The essential operating feature of such a fin is that the longitudinal flow of the medium along its surface
is accompanied by a transverse passage of that medium through the perforations (at constant values of &,
Oy O, and A

As in [1], we will set up a differential equation of the temperature field in a fin element (Fig, 1b) in
the one-dimensional approximation (the validity. of such a representation when the holes are small, i.e., the
ratio ¢/b is small, has been confirmed by subsequent experiments):
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After the left-hand side of Eq. (1) has been expanded, it can be reduced to a form not containing the
first derivative [2]. The substitution # = z/v'h yields the following linear differential equation:
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This is an equation of the Hill kind [3-6], because &(x) is an even periodic function with the period ¢. With
& (x) expanded into a Fourier series and with a change of variables t = 27x/¢, this equation becomes
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According to Flocke's theory [5], the general solution to Eq. (3) is
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After reconciling this solution with the boundary conditions
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Fig. 1. Schematic diagram of the fin (a) and its element (b).

Fig. 2. Temperature profile of a perforated fin, according to test data (points) and
according to calculations (lines): 1) & = ay; 2) oy reduced to one half; 3) o and oy
reduced to one half relative to curve 1.
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which correspond to the boundary conditions for Eq. (1) in its original form

=70, at x=0 andﬂzo at x =]/,
dx

we obtain the temperature profile in a perforated fin insulated at the end:
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The values of u and Cy, can be found by solving Eq. (3) by Hill's method of the infinite determinant [5, 6].

The last two factors on the right-hand side of Eq. (5) constitute a periodic function with the period c.
For values of x which are multiples of c¢ this function becomes unity. One may state, therefore, that the
monotonic temperature drop along the fin height — of particular interest here — is determined by the first
factor only and that the other two factors represent spatial temperature fluctuations superposed on the fun-
damental profile. With sufficiently many rows of perforations along the fin height, the periodic fluctuations
have obviously no significant effect on the shaping of the temperature profile. After differentiating Eq. (5),
we obtain an expression for the thermal flux transmitted through a fin:
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Thus, determining the fundamental temperature profile and the thermal flux involves the calculation
of only one . For this purpose, according to [5, 6], one can use the transcendental equation

sin? (% ign) — A(0) sin? (%n‘/ﬁg ) | (6)

where the value of the Hill determinant A(0) for 1 = 0 is estimated as
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With small holes, the periodic deviations of &(x) from the mean values are small and Ry, Ry, ... are
small as compared to R,. Therefore, for estimating purposes, we assume A(0) = 1. Then Eq. (8) yields

p=+vVRyor
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We will now show that the first term under the radical sigh in (8) is generally negligible, Indeed, at a
low heat-transfer rate (at low values of o and @) the second term under the radical sign is small. Under
such conditions, as follows from (1), the temperature profile of a perforated fin insulated at the end will
tend to become a uniform one (3/¢; —~ 1). According to (5), however, this is possible only at small values
of u, and this indicates that the first term is small. At finite values of o and q4, therefore, only the second
term in (8) is significant — the term which represents the mean-integral ratio of convective and conductive
thermal conductances (or thermal resistances),

All this leads to physical considerations which are important to our problem. It is well known that
the steady-state temperature profile of a solid thin fin is a function of the Biot number, which in this case
represents the ratio of convective to conductive thermal conductance [7]:

6
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As a result of perforations, the ratio of thermal conductances changes on account of the change in
the surface area, in the fransverse section, and in the heat-transfer rate at the fin elements. Accordingly,
the temperature profile of a fin becomes distorted. A perforated fin can, as an approximation, be re-
placed by an equivalent solid fin with the same thermal conductances. The temperature profiles of such a
fin and its perforated prototype must be identical. With the Biot number determined for the equivalent
solid fin, the temperature profile of the latter and thus of the perforated fin can be calculated by well-
known formulas for a solid fin, The value of the Biot number for the equivalent solid fin can be found by
integrating the mean-over-the-height thermal conductances. We have
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Expression (10), which represents the ratio of mean-integral conductances, must correspond closely to
the second term under the radical sign in (8), representing, as has been noted earlier, the mean-integral
ratio of these thermal conductances. It is possible to show that a definite integral over a product (par-
ticular) of two functions (in our case the thermal conductances) does not differ much from the product
(particular) of their integrals, if both functions can be represented by a sum of a constant (not equal to
zero) term and a relatively small variable term. The latter requirement is obviously satisfied for the
integrand of the second ferm in (8) when the holes are small,

All this leads to the conclusion that the temperature profile and the efficiency of a perforated fin
can be calculated by the formulas
s[5
! (11)
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where Bi is determined according to (10).

We will now show that the simplified formulas (10)~(12) yield results sufficiently accurate for en-
gineering purposes (with the available option of a more accurate solution, if necessary). For this purpose,
we have checked our method experimentally by simulating the temperature field of a perforated fin in an
electrolytic trough [8].

The model was a 10-times magnification of an element of a perforated fin with the dimensions [ = 60
mm, b = 3.1 mm, and ¢ = 3.0 mm. The lateral walls of the trough were made of acrylic glass, while the
bottom was made of polished glass-Textolite sheet. Sixty discrete electrodes 10 mm wide were laid on the
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bottom by brush coating. They were supplied from an audio-signal generator at a 300 Hz frequency. The
potential distribution in the electrolyte was measured with a vacuum-tube voltmeter, The resistance to
heat transfer from the lateral fin surface was simulated by electrical resistors of definite ohmic values in
the network. The perforations and the heat-transfer rate at their lateral surfaces were simulated by glass
and copper cylinders, respectively (with appropriate resistors soldered on) 10 and 15 mm in diameter.

With a sufficient electrolyte depth (approximately 30 mm), which almost eliminated the effect of
trough perimeter wetting, the measured value of Bi did not exceed by more than 2-3% its value calculated
for a solid fin. The experimental and the theoretical values (the latter according to the simplified method)
of the temperature (potential} profile are compared in Fig. 2 for three models of a fin with perforations 10
mm in diameter, The agreement between tested and calculated values is entirely satisfactory. The sys-
tematic discrepancy between both sets for the Biot number (not more than 10%) is largely due to the dis-
proportionately magnified effect of wetting, because, as a result of perforation, the wetted perimeter of
the model is magnified almost 1.5 times more. In all tests with models of perforated fins the potential at
various points on any section did not deviate more than 29,, Therefore, the original assumption of a uni-
form temperature field in a perforated fin was very nearly valid as long as a/b < 0.3-0.4 and oy =< .

In conclusion, we note that the proposed method of calculating the temperature profile can, evidently,
be used also for other perforation pattersns, ‘

NOTATION

4, 4, are the temperature along the fin and temperature at the fin base, respectively, above ambient;

Bi is the Biot number;

a, oy are the heat-transfer coefficients for the lateral fin surface and for the surface of holes, respec-
tively;

A is the thermal conductivity;

1,6 are the fin height and thickness;

a is the hole diameter;

b, ¢ are the longitudinal and transverse perforation pitches.
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