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An approximate method is proposed for calculating the temperature  profile of a thin pe r -  
forated fin. 

In connection with a study concerning one novel design of an effective heating surface,  there ar ises  
the problem of determining the s teady-s ta te  temperature  field in a thin (6 / l  << 1) perforated fin (Fig. la). 
The essential  operating feature of such a fin is that the longitudinal flow of the medium along its surface 
is accompanied by a t r ansverse  passage of that medium through the perforations (at constant values of ~0, 

a ,  e l ,  and k). 

As in [1], we will set  up a differential equation of the temperature  field in a fin element  (Fig. lb) in 
the one-dimensional  approximation (the val idi ty  of such a representat ion when the holes are small ,  i.e., the 
rat io a / b  is small,  has been confirmed by subsequent experiments):  

d [~,6h ~ x  ] = 2ha~dx + lfll + (h')26o:~t~dx. (i) 

After the left-hand side of Eq. (1) has been expanded, it can be reduced to a form not containing the 
f i r s t  derivative [2]. The substitution ~ = z/4-h yields the following linear differential equation: 

where 

d2~z + q0 (x) z : 0, (2) 
dx ~ 

~(x)  = l (lnh),, l [(lnh),]2_ _ ~  I i  _]_ ax~ V r ~ ( h ~ 2 ]  . 

This is an equation of the Hill kind [3-6], because r is an even periodic function with the period c. With 
�9 (x) expanded into a Four ie r  se r ies  and with a change of variables  t = 2~x/c ,  this equation becomes 

+ + E cosnt) = 0, (3) 
dt 2 n=i 

where 

Ro- 

c/2 
c ~ 4 f 2zcnXdx' c~ a~ R ~ = - -  " a ,~ .=- -  q3(x) cos n = O ,  1,2 .. . .  

4n 2 2 ' 4n  2a~' c c 
0 

According to F locke ' s  theory [5], the general  solution to Eq. (3) is 

After reconciling this solution with the boundary conditions 
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Fig. 1 

Fig. 1. Schematic d iagram of the fin (a) and its element (b). 
Fig. 2 

Fig. 2. Tempera tu re  profile of a perforated fin, according to test  data (points) and 
according to calculations (lines): 1) ~ = a l ;  2) a l  reduced to one half; 3) ~ and a l  
reduced to one half relat ive to curve 1o 

Z = @ o l / ~  at/=O and dz 0 at t 2zl 
V Z  dt  c 

which correspond to the boundary conditions for  Eq. (1) in its original  fo rm 

dO 
= ~o at x = O and . . . .  0 at X - l, 

d x  

we obtain the tempera ture  profile in a perforated fin insulated at the end: 

ch 2rr ,u - -  ~ C~ cos - - - -  

O o 2h (x) 

2 ~ m x  

C 
(5) 

The values of p and C m can be found by solving Eq. (3) by Hill 's  method of the infinite determinant  [5, 6]. 

The last  two fac tors  on the r ight-hand side of Eq. (5) constitute a periodic function with the period c. 
For  values of x which are  multiples of c this function becomes unity. One may state, therefore ,  that the 
monotonic tempera ture  drop along the fin height - of par t icular  in teres t  here - is determined by the f i r s t  
fac tor  only and that the other two fac tors  r epresen t  spatial tempera ture  fluctuations superposed on the fun- 
damental  profile. With sufficiently many rows of perforat ions along the fin height, the periodic fluctuations 
have obviously no significant effect on the shaping of the tempera ture  profile. After differentiating Eq. (5), 
we obtain an express ion  for  the thermal  flux t ransmit ted through a fin: 

2 ~ d x / ~ = o  2 c 

Thus, determining the fundamental  tempera ture  profile and the thermal  flux involves the calculation 
of only one ~. For  this purpose,  according to [5, 6], one can use the transcendental  equation 

where the value of the Hill determinant  A(0) for/~ = 0 is est imated as 

4Ro (Ro--  I) 2 4 (Ro- -  I) 2. 2 (Ro- - l )  Ro 

With smal l  holes, the periodic deviations of r f rom the mean values are  smal l  and R1, R 2 . . . .  are 
smal l  as compared to R 0. Therefore ,  for  est imating purposes,  we assume A(0) = 1. Then Eq. (6) yields 
p = • ~rR 0 or 

(7) 
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/-" v/2 c/2 

2. Z, :,/V C2/2J0 ~' ~ } CJO _~_[] . 2o~h v_LO~l~ / 1 ] 
~/l(lnh)"+ [(lnh)']' ax+2~ 2~t' +(h')' dx. (8) 

C 

We will now show that the f i r s t  t e r m  under the rad ica l  sign in (8) is genera l ly  negligible. Indeed, at a 
low h e a t - t r a n s f e r  ra te  (at low values of a and al)  the second t e r m  under the rad ica l  sign is smal l .  Under 
such conditions, as follows f r o m  (1), the t empe ra tu r e  profi le  of a per fora ted  fin insulated at the end will 
tend to become a uni form one (#/'~0 -'* 1). According to (5), however,  this is possible  only at smal l  values 
of p, and this indicates  that the f i r s t  t e r m  is smal l .  At finite values  of c~ and ~l,  therefore ,  only the second 
t e r m  in (8) is s ignificant  - the t e r m  which r e p r e s e n t s  the mean- in t eg ra l  ra t io  of convective and conductive 
t he rma l  conductances (or t he rma l  res i s t ances ) .  

All this leads to physical  considerat ions  which a re  impor tan t  to our problem.  It is well  known that 
the s t eady-s t a t e  t empe ra tu r e  profi le  of a solid thin fin is a function of the Blot number ,  which in this case 
r e p r e s e n t s  the ra t io  of convective to conductive the rma l  conductance [7]: 

B i -  (z2l (9) 

T 6 
As a r e su l t  of per fora t ions ,  the ra t io  of t he rma l  conductances changes on account of the change in 

the su r face  a rea ,  in the t r a n s v e r s e  sect ion,  and in the h e a t - t r a n s f e r  ra te  at the fin e lements .  Accordingly,  
the t e m p e r a t u r e  profi le  of a fin becomes  dis tor ted.  A per fora ted  fin can, as an approximation,  b.e r e -  
placed by an equivalent solid fin with the s ame  the rma l  conductances.  The t emPera tu re  prof i les  of such a 
fin and i ts  per fora ted  prototype mus t  be identical.  With the Biot number  de te rmined  for  the equivalent 
solid fin, the t e m p e r a t u r e  profi le  of the la t te r  and thus of the per fo ra ted  fin can be calculated by wel l -  
known fo rmulas  for  a solid fin. The value of the Blot number  for  the equivalent solid fin can be found by 
in tegra t ing the m e a n - o v e r - t h e - h e i g h t  t he rma l  conductances.  We have 

B i =  2c~/2 h i 1 - -  y~ae alY~a6] [ 2b arctg V b §  g cba]  
X-~-" ~- ~c § ~ i./b2~--a ' b--a 2 § ' (10) 

E x p r e s s i o n  (10), which r e p r e s e n t s  the ra t io  of mean- in t eg ra l  conductances,  must  co r respond  c lose ly  to 
the second t e r m  under the rad ica l  sign in (8), r epresen t ing ,  as has been noted ea r l i e r ,  the mean - in t eg ra l  
r a t io  of these the rma l  conductances.  It is possible  to show that a definite in tegra l  over  a product  (par-  
t icular)  of two functions (in our case  the t he rma l  conductances) does not differ  much f r o m  the product  
(part icular)  of thei r  in tegra ls ,  if both functions can be r ep resen ted  by a sum of a constant (not equal to 
zero) t e r m  and a re la t ive ly  sma l l  va r iab le  t e rm.  The la t t e r  r equ i r emen t  is obviously sa t is f ied for  the 
integrand of the second t e r m  in (8) when the holes a re  smal l .  

All this leads to the conclusion that the t e m p e r a t u r e  profi le  and the eff iciency of a per fora ted  fin 
can be calculated by the fo rmulas  

and 

#0 ch vrBi - 

a ~ b - -  a 2 ~o l / ~ -  c []/6 2~ arctg , (12) 

where  Bi is de termined according to (10). 

We will now show that the s implif ied fo rmulas  (10)-(12) yield resu l t s  suff iciently accura te  for  en-  
gineer ing purposes  (with the avai lable option of a more  accura te  solution, if necessa ry ) .  F o r  this purpose,  
we have checked our method exper imen ta l ly  by s imulat ing the t e m p e r a t u r e  field of a per fora ted  fin in an 
e lec t ro ly t ic  trough [8]. 

The model was a 10- t imes  magnif icat ion of an e lement  of a per fora ted  fin with the d imensions  l = 60 
ram, b = 3.1 mm,  and c = 3.0 mm.  The la te ra l  wails  of the t rough were  made of ac ry l ic  g lass ,  while the 
bot tom was made of polished g l a s s -Tex to l i t e  sheet .  Sixty d i sc re t e  e lec t rodes  10 m m  wide were  laid on the 
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bottom by brush coating. They were supplied from an audio-signal generator at a 300 Hz frequency. The 
potential distribution in the electrolyte was measured with a vacuum-tube voltmeter. The resistance to 
heat transfer from the lateral fin surface was simulated by electrical resistors of definite ohmic values in 
the network. The perforations and the heat-transfer rate at their lateral surfaces were simulated by glass 
and copper cylinders, respectively (with appropriate resistors soldered on) i0 and 15 mm in diameter. 

With a sufficient electrolyte depth (approximately 30 ram), which almost eliminated the effect of 
trough perimeter wetting, the measured value of Bi did not exceed by more than 2-3% its value calculated 
for a solid fin. The experimental and the theoretical values (the latter according to the simplified method) 
of the temperature (potential) profile are compared in Fig. 2 for three models of a fin with perforations i0 
mm in diameter. The agreement between tested and calculated values is entirely satisfactory. The sys- 
tematic discrepancy between both sets for the Blot number (not more than 10%) is largely due to the dis- 
proportionately magnified effect of wetting, because, as a result of perforation, the wetted perimeter of 
the model is magnified almost 1.5 times more. In all tests with models of perforated fins the potential at 
various points on any section did not deviate more than 2%. Therefore, the original assumption of a uni- 
form temperature field in a perforated fin was very nearly valid as long as a/b < 0.3-0.4 and ~I -< ~" 

In conclusion, we note that the proposed method of calculating the temperature profile can, evidently, 
be used also for other perforation patterns. 

~, ~0 
Bi 
~, C~ I 

k 
1 ,5  
r 

b, c 

NOTATION 

are the temperature along the fin and temperature at the fin base, respectively, above ambient; 
is the Blot number; 

are the heat-transfer coefficients for the lateral fin surface and for the surface of holes, respec- 
tively; 
is the thermal  conductivity; 
are  the fin height and thickness; 
is the hole d iameter ;  
are the longitudinal and t r ansver se  perforat ion pitches. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 
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